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Let Z be an ideal in a Noetherian ring R. We concern ourselves with the 
essential prime divisors of Z, an interesting subset of Ass R/P, for all large 
n. We first take Z = bR with b a regular element of R. We show that there is 
a ring T, with R c TE R,, such that T is a finite R-module and the essen- 
tial primes of bT are exactly the prime divisors of bT. We next consider an 
arbitrary ideal Z, and apply our principal arguments to the element u in the 
Kees ring of Z. We thereby deduce that there is an idcal J projectively 
equivalent to Z, such that the set of essential primes of Z equals the set 
U Ass R/J”, over II = 1, 2, 3 ,.... 

Notation. Let Z be an ideal in a Noetherian ring R. We will use W (or 
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R(I)) to be the Rees ring of I. Thus .!%= R[u, It]. 
minate, and u = I-‘. If R is local, R* will denote its completion. 

A *(I) = Ass R/r” for sufficiently large pz, 

(the persistent primes of I). 

Q(I) = {P E Spec R 1 I G P and there is a z E Ass 

minimal over IR; + z > 

(the quintessential primes of I). 

E(I)= (Pn R / PE&(u.%‘)), 

(the essential primes of I). 

Q(bi)=(P~SpecR/ P$AssRandRT,hasadepthl 

divisor of 0 >, 

(the essential primes of R). 

A Remark about Notation and Terminology. The notation and names of 
E(Z) and Q(I) as given above, represent a change from us 
publications, in particular from the references quoted herein. 
appendix which offers our reasons for making these changes, and which 
will be helpful for translating results in the references into the new ter- 
minology. 

PROPOSITION 1. (a) If S is a multiplicatively closed subset of 
a prime disjoint from S, then P E E(I) if and only if P, E E(I,). 

(b) If R E T is a faithfully flat extension of ~oe~l~er~a~ rings, then 
P E E(I) if and only if there is a Q E E(IT) with Q n R = P. 

(c) Let the ring T be a finite module extension of R. If P E 
there is a Q E E(IT) with Q n R = P. If also z E Ass T implies z n 
then the converse holds as well. 

(d) If b is a regular element of R, then E(bR) = 

(e) Let P E b(R), and let b be an element in P whose image in p is 
regular. Then P E E(bR). 

(f) If b is a regular element of R and P E E(bR), then P is a prime 
divisor of bR. 

(g) If I and J are projectively equivalent ideals, then E(I) = E(J). 

(h) E(I) c A*(Z), and these sets are finite, 
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Proof: (a), (b), (c), and (d) are proved in [2, (2.5.1), (2.5.3), (2.5.4), 
and (2.5.8)]. (e) is straightforward from part (d) and the definitions. For 
(f), if P E E(bR), then [2, (2.3.3)] shows that P is a prime divisor of b”R for 
some IZ > 0. Since b is regular, P is prime divisor of bR. (g) is proved in 
[2, (2.5.6)]. The containment in (h) is given in [2, (2.3.3)]. Finally, A*(Z) 
is well defined, and finite by [3, Corollary 1.51. 

We need a powerful result about ideal transforms. 

DEFINITION. Let Z be a regular ideal in a Noetherian ring R. The ideal 
transform T(Z) = { y 1 y is in the total quotient ring of R, and for some 
~120, ~~GRR). 

PROPOSITION 2. Let Z be a regular ideal in a Noetherian ring R. Then 
T(Z) is a finite R-module if and only zf Z @ P for all P E d(R). 

Proof This follows from [3, Propositions 10.9 and 10.111. 

We need an easy idea which is not easily expressed. The following 
definition corrects that situation. 

DEFINITION. Suppose KE H are rings and x is an element of K such 
that K, = H,. Let U be a subset of Spec K, and suppose that x # P for all 
P E U. Let W = {P, n H 1 P E U}. Then we shall show that x lifts U to W. 
(In this case, there is a natural one-to-one inclusion preserving correspon- 
dence between U and W, corresponding primes having the same height). 

LEMMA 3. Let K be a Noetherian ring and let b be a regular element of 
K. Let E(bK) = {Q ,,..., Q,}, and let P ,,..., P, be the prime divisors of bK 
which are not contained in Q, v . . . v QM. Let x be a regular element in 
(P, I-? ... n PJ-(Q, v ... uQ,). Let H=K,n Kb. Then 

(i) H is a finite K-module. 
(ii) K, = H,. 
(iii) x lifts (P E Ass K/bK 1 P is contained in some prime in E(bK)} to 

Ass ZZIbH. Also, no prime in Ass H/bH contains x. 
(iv) x lifts E(bK) to E(bH). 
(v) the maximal members of Ass H/bH are identical to the maximal 

members of E(bH). 
(vi) Zf K satisfies .B = R(Z) G KG R[u, t] with K graded, and if b = u, 

then x can be chosen to be homogeneous, and H will be a graded ring with 
~S?SKSH~R[U, t]. 

Proof We first mention that we can always find an x as in the 
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statement. Since b is regular, we see that P, n ‘.. n P, @ ‘J ( 
ce, u ... u Q,), and so we use the prime avoidance lemma. 

(i) One easily sees that H is the ideal transform T((b, x) K). 
Proposition l(e), any prime in b(K) which contains b is automatically . 
E(bK). Therefore, by the choice of X, no prime in 6(K) contains (b, x) 
Thus by Propositin 2, H is a finite K-module. 

(ii) This is trivial. 

(iii) Since b is a unit in Kb, bH= b(K,n Kb) = bKXn Kb= bK,n 
K, n K, = bK, n H = bH, n H. By standard facts about primary decom- 
position, we see that x lifts (P E Ass K/bK I x $ P> to Ass H/xH, so that 
the last statement in (iii) is true. Also, the choice of x shows 
that {P E Ass K/bK 1 P is contained in some prime in E(bK) j = 
(PEASS K/bK 1 x# P}, so that the first statement is true. 

(iv) By Proposition l(f), primes in E(bH) are always in Ass 
and so do not contain x, by (iii). Also, primes in E(bK) do not contain X, 
by construction. Therefore, since K, = HXF it follows trivially from 
Proposition l(a) that x lifts E(bK) to E(bH). 

(v) This follows easily from (iii), (iv), and Proposition l(f). 
(vi) Since u is homogeneous, the primes Q,,..., 

homogeneous, as are the primes in Ass K. An easy variatio 
dard prime avoidance lemma allows us to pick our x to be 
Obviously KE HE Ku= R[u, t]. Since yelp exactly when y~:R[u, t] an 
some positive power of the homogeneous element x sends y into K, we 
easily see that H is a graded ring. 

Recall that a local ring (R, M) is unmixed if for every z E Ass R*, depth 
z = height M. (Thus, a complete local ring with a single prime divisor of 
zero is unmixed.) It is known that if R is a Noetherian ring and R, is 
unmixed for all maximal ideals M, then R is locally unmixed, i 
unmixed for all primes P. Also, if I is an ideal in a lo 
Noetherian ring R, and if R(I) is the Rees ring of 1, then 
unmixed. See [S]. 

LEMMA 4. Let A E B c C be Noetherian rings with A c B a faithfuly f&z&b 
extension, and B c C a finite module extension such that for all z E Ass C, 
z n BE Ass B. Suppose also that C is IocaIly unmixed. Let b be a regular 
element of A (so b is still regular in C). Pick x and H= C, n G, as in 
Lemma 3 applied to K = C and b E C. Let D = Hn Ab. Then D is a finite 
A-module contained in A,, and Ass D/bD = E(bD). 

Proof. Note that D = C, n A,. Since b is a unit in both Cb an$ A,, 

4XL/109/2-13 
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bH= bC, n C, and bD = bC, n A,. Thus it is easy to verify that 
bH n D = bD. Therefore, primes in Ass D/bD lift to primes in Ass HIbH. 

If Q E E(bC), then by Proposition l(d), Q E Q(bC), and so Qz is minimal 
over bC; + z for some z E Ass Cz. Therefore depth z = 1. Since C, is 
unmixed, height Q = depth z = 1. Thus every prime in E(bC) has height 1. 
Lemma 3(iv) now shows that all of the primes in E(bH) have height 1. By 
Lemma 3(v) and Proposition l(f), we see that Ass H/bH= E(bH). 

By Lemma 3(i), H is a finite C-module, and by assumption C is a finite 
B-module. Thus H is a finite B-module. Since BE BED] E H, H is a finite 
B[D]-module. Also, primes in Ass H contract to primes in Ass B[D], since 
this holds between B and C, and we are working in the total quotient rings 
of these two rings. By Proposition l(c), primes in E(bH) contract to primes 
in E(bB[D]). Also, B[D] = B Oa D, so by Proposition l(b), primes in 
E(bB[D]) contract to primes in E(bD). Thus primes in E(bH) contract to 
primes in E(bD). 

Combining the conclusions of the previous three paragraphs shows that 
Ass D/bD = E(bD) (since one inclusion is by Proposition l(f)). Also, since 
H is a finite B-module, we see that B[D] is a finite B-module. Since 
B[D] = B @A D, faithful flatness shows that D is a finite A-module. 
Obviously D E Ah. 

Let R be a Noetherian ring with integral closure R’. Let b be a regular 
element of R. If T is a ring with R E Tc R’ and T a finite R-module, then 
Proposition l(c) and (f) show that any prime in E(bR) lifts to a prime 
divisor of bT. In general, the converse fails. However, our first main 
theorem shows that there exists such a T for which the converse holds. 

THEOREM 5. Let b be a regular element of the Noetherian ring R. Then 
there is a ring T with R c T G Rb such that T is a finite R-module and 
Ass T/bT= E(bT). Also, P E E(bR) if and only if P lifts to a prime divisor 
of bT. 

ProoJ: Let S= R - u {P E E(bR)), and let A = R,. As A is semi-local 
(Proposition l(h)), let B equal the completion A*. Let q1 n *.. n qn be a 
primary decomposition of 0 in B, and let C = B/q, @ * . . 0 B/q,. There is a 
natural embedding of B into C. Under it, we see that b, A, B, and C satisfy 
the hypotheses of Lemma 4 (since every maximal localization of C is a 
complete local ring with a single prime divisor of zero, and hence is 
unmixed). Let D be as defined in that lemma. Then R, s D c (RS)b = 
(Rb)S. Also, if R’ is the integral closure of R, then since D is a finite Rs 
module, DE R>. Thus R,E D c (Rb n R’),. It is easy to find a finitely 
generated ring F with R c FE R, n R’, such that F, = D. Obviously, F is a 
finite R-module. 

We now claim that { PE Ass F/bF 1 P is contained in a prime in 
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E(bF)j = E(bl;). Suppose P is in the first set, and that P c Q EE(~F). 
Proposition l(c), Q n R E E(bR), and so is disjoint from S. T 
P n S = 0. Therefore, P, is a prime divisor of bFs = bD. But Ass D/bD = 
E(bD), so P, E E(bD) = E(bFs), and so P E E(bF), by Proposition l(a). This 
shows one containment of our claim. The other is by Proposition l(f). 

We now apply the construction of Lemma 3 to K= F and b E 4;. We let T 
be the ring H given by that lemma. Then T is a finite F-module, 
finite R-module, and Tc Fb = R,. Also by Lemma 3(iii) and (iv), a 
claim we have just proved, we have Ass T/bT= E(bT). Thus the first con- 
clusion. of our theorem is proved. For the second, if PgE(bR) then P lifts 
to a prime divisor of bT by Proposition l(c) and (f). Conversely, if p is a 
prime divisor of bT, then PEE, and so p n RE (bT) by 
Proposition 1 (c). 

The next corollary is easy, but it points out an important difference 
between arbitrary prime divisors and essential primes of a regular element. 

COROLLARY 6. Let b be a regular element of a Noetherian ring R having 
integral closure R’. Then PE E(bR) if and only if P lifts to a prime divisor ?f 
bT for every finitely generated ring T with R c T E R’. 

ProoJ: This is easy by Proposition I(c) and (f), and Theorem 5. 

Notation. If R is a Noetherian ring, we use B 
(PE Spec R 1 P, has grade 1 }. Also, let J(R) =9(R) - 
follows from Proposition 1, parts (a), (ef, and (f), that G”(R)z9(R).) 

In [4], a study is made of when M(R) is finite. For instance, if 
semilocal, then M(R) is finite. Part (b) of the next corollary answers a 
question asked in [6, (6.7.2)]. 

COROLLARY 7. Let R be a Noetherian ring. 

(a) Let b be a nonnilpotent element of nd let K be the kernel of the 
canonical map R -+ R,. There is a ring T wit b such that T is a 
finite R-module, and Ass TjbT= E(bT). 

(b) If&“(R) is finite, then b and T can be chosen as in part (a) such 
that JV( T) = 0. 

ProoJ: (a) We easily see that b + K is regula 
(R/K) h + K = R, . Thus (a) follows from Theorem 5. For 
primes cannot be in 9(R), if X(R) is finite, we c 
potent b contained in the intersection of the imes in 
in part (a). If PE~‘( T), we must show E b(T). 
P E Ass T/bT= E(bT) E &(T). Thus suppose bT G B. Since Tb = I$, 
that P, E Y( T,) = 9(Rb). Thus if Q is the inverse image of B, in 
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Q EY(R). Also, b$ Q. By choice of b, we have Q E b(R). Thus 
P, = Qb E &(&,) = a( Tb), and so P E &(T). 

We now begin considering an arbitrary ideal Z in a Noetherian ring R. 
Recall that W (or R(Z)) will denote the Rees ring of I. We will apply the 
preceding ideas to E(u2) = Q(u92) (Proposition l(d)), and use them to 
deduce information concerning E(Z) = {Pn R 1 PE Q(u%!)}. 

THEOREM 8. Let Z be an ideal in Noetherian ring R, and let .% be the 
Rees ring of I, There is a graded ring T with 9 c T G R[u, t], such that T is 
a finite .%?-module, and Ass TjuT= E(uT). 

Proo$ Were we to simply apply Theorem 5 to the ring $2 and the 
regular element u, we would find a ring T with .%? E TE &?,, = R[u, t], such 
that T is a finite 9%module, and Ass T/UT= E(uT). Thus T would have all 
the properties we want, except that of being graded. Therefore, this proof 
shall consist of an outline of what minor changes must be made in the 
proof of Theorem 5 in order to assure that the resulting T is graded. 

Let S=R-U {PEE(Z)}. Let A=R,, B=A*, and C=B/q,@ . . . @ 
B/q,, where qln ... nq, is a primary decomposition of 0 in B. Let 
d = A[u, ZAt], ?3 = B[u, ZBt], and V = C[u, ZCt]. Now u, &‘, 99, and V 
satisfy the hypotheses of Lemma 4. We apply Lemma 3(vi) to u and %?, and 
find a graded ring H with $? z H c C[u, t] as described in Lemma 3. We 
now let D = H n dU. D is as described in Lemma 4, and also, D is a graded 
ring with &‘GDDG?,,=A[u, t]. Since gs=zZ, and since SER, we now 
find F as in the proof of Theorem 5, this time insisting that F is also graded 
with 92 E FE R[u, t]. Now primes in E(uF) = Q(uF) contract to primes in 
E(u,G%‘) = Q(u92), and then to primes in E(Z). Thus primes in E(uF) are dis- 
joint from S. We easily see that E(uF) = {P E Ass F/uF 1 P is contained in 
some prime in E(uF)). Finally, apply Lemma 3(vi) to F, to find a graded T 
satisfying our theorem. 

DEFINITIONS. If Z is an ideal, its integral closure will be denoted (I),. 
The ideals Z and J are projectively equivalent if for some positive integers n 
and m, (Y)a = (J”),. 

By Proposition l(g) and (h), we see that E(Z) c n A*(Z’) over all ideals 
I’ which are projectively equivalent to I. In [l], it is shown that this 
inclusion is actually an equality. Our next theorem, goes considerably 
further, and has this fact as an obvious corollary. Our proof is independent 
of [l]. 

THEOREM 9. Let Z be an ideal in a Noetherian ring R. Then there is an 
ideal Jprojectively equivalent to Z such that if R(J) is the Rees ring R[u, Jt], 
then Ass R(J)/uR(J) = E(uR(J)). Furthermore, E(Z) = A*(J) = u Ass R/Sri, 
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over all m > 1. (In fact, for large n, we can find J with r” E JC (P),.) 
there is an ideal K projectively equivalent to I such that E(1) = Ass la/ 

Proqf Let 2 G Tc R[u, t] be as in Theorem 8. Let I, = unTn 41 
pose n is large enough that a set of homogeneous module generators of 7 
over 9 all have degree n or less. Then it is not hard to see that I, + j = IJIn 
for all j> 0, which implies (IJk = I,, for al! k> 1. Let J-I,, so that 
f = Ink for all k 3 1. Since T is between 92 and its integral closure, we see 
that r’cJc(l”),. Let B = R[u”, Jt”] c T. Now it is easy to see t 
u”T A B = u”B. Thus primes in Ass B/u”B lift io primes in Ass T/u”T. 

B c T is an integral extension, since the nth power of any homogeneous 
element of T is in B. Also, T is obviously finitely generated (as a ring) over 
B. Thus T is a finite B-module. As t is an indeterminate, we easily see that 
primes in Ass T contract to primes in Ass B. y Proposition l(c), 
E(u”T) contract to primes in E(u”B). Combining this fact 
conclusion of the preceding paragraph, and the fact that As 
Ass T/“luT=E(uT) =E(zJ7T) (the last equality by Proposition l(g) or 
and the definition), we see that primes in Ass B/u”B are in E(u”B), and so 

Ass B/u”B = E(u”B). Now R(J) = R[u, Jt] is obviously isomorphic to 
R[u”, Jtn] = B, and so the first conclusion of our result is true. 

For the second conclusion, by Proposition l(g) an 
E(I) = E(J) E A*(J) c U Ass R/J”’ over m 3 1. Now 
divisor of J” for some m 2 1. As J” = umR(J) A R, P lift 

of zYR(J). As u is regular, Q is a prime divisor of 
usion, already proved, (2 cE(uR(J)). By Pro 

definition, P = (2 n R E E(J) = E(I). Thus U Ass R/J” c E(I), whit 
the second conclusion. 

The final conclusion of the corollary is easy, 
E(I) = A*(J), J as above. For large k, A*(J) = Ass R/Jk, and so we take 
K=Jk. 

Remark. In the situation of the previous proof, a bit more is true t 
we have stated. There is a very natural isomorphism between ~(~R(J~) and 
E(uT). To see this, of course there is a natural isomorphism between 

(uR(J)) and E(uB). Now let PEE(uB), and by 
E E(uT) lie over P. Since Q E Ass T/UT, Q is homog 

IZ th power of any homogeneous element of Q falls i 
prime in T lying over P. Thus Proposition l(c) s 
E(uT) are naturally isomorphic. 

t highlight an interesting analogy between E(I) a 
of A*(I) is given in the appendix. It is ~~ow~ 
for all large yt. (In fact, in [3], this is used as the de~~~t~Q~ of 

A*(I). Thit the two definitions are equivalent follows fairly easily from 
[3, Proposition 3.18(i), (ii), (iii), and Proposition 3.19(i) (iii)].) 
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COROLLARY 10. Let I be an ideal in a Noetherian ring R. Then there is 
an ideal K projectively equivalent to I such that E(Z) = Ass R/K, and 
A*(Z) = Ass R/(K),. 

Proof By the above comments, we may pick n large enough that 
A*(Z) = Ass R/(F), for all man. By Theorem 9, we then pick J with 
I”sJc (F),. Let K= Jk, as in the proof of Theorem 9. Then 
E(I)= Ass R/K. Also, we easily see that Pks KG (P’k),, so that 
(K), = (rk),. Thus A*(Z) = Ass R/(F’), = Ass R/(K),. 

It is of interest to know when all powers of some ideal I are primary. The 
next corollary is a variation on that theme. 

COROLLARY 11. Let I be an ideal in a Noetherian ring R. There is an 
ideal J projectively equivalent to I such that all powers of J are primary to 
PESpec R ifand only ifE(Z)= {P}. 

Proof If E(1) = {P}, then the J found in Theorem 9 clearly has all 
of its powers primary to P. Conversely, if such a J exists, then E(I) c 
A*(J) = {P}, so E(I) = {PI. 

Recall that the classical unmixedness theorem states that if R is 
Cohen-Macaulay, and I is an ideal of the principal class (i.e., Z can be 
generated by n elements, with n = height I), then for m = 1, 2, 3,..., 
U Ass R/I”’ consists exactly of the primes minimal over L We present a 
variation of this. 

COROLLARY 12. Let R be locally unmixed, and let I be an ideal of the 
principal class. Then there is an ideal J projectively equivalent to I such that 
for m = 1, 2, 3,..., u Ass R/J” consists exactly of the primes minimal over J 
(or equivalently, over I). 

Proof By [l, 3.51 and Proposition l(a), we have that if R is locally 
unmixed and Z is of the principal class, then E(I) consists exactly of the 
primes minimal over I. (Note: In [l], E(I) is denoted A”*(I).) The result 
now follows from Theorem 9, and the fact that projectively equivalent 
ideals have the same radical. 

In [7, (3.1)], the following result is shown. If J is an ideal in a local ring 
R, and if R(J) is the Rees ring of J, then {depth P 1 P E E(uR(J))) s 
(depthz 1 ZEASSR”). 

COROLLARY 13. Let I be an ideal in a local ring R. There is an ideal J 
projectively equivalent to I such that (depth P / P E Ass R(J)/uR(J)) E 
(depth z 1 z E Ass R* >. If also R is complete, then equality holds. 
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ProoJ If we pick J as in Theorem 9, then the first art is immediate 
from [7, (Xl)]. Suppose now that R is complete, and 
z* =zR[u, t] n R(J), so that z* EASS R(J). Let p be a minimal prime 
divisor of (z*, u) R(J). Clearly p E E(uR(J))~ The proof of [7, (Xl)] shows 
that depth p = depth z. 

APPENDIX 

The study of special sets of prime divisors of an ideal in a Woetherian 
ring has developed fairly rapidly over the last few 
from some growing pains. This is particularly true 
minology. As an example, previous terminology di 
and u-essential primes. However, subsequent progress 
u-essential primes are probably the more important o 
irksome that they had the more ackward name. After much reflection the 
authors of this paper have concluded that it will be worth the effort to 
make some changes. The following table lists them. 

Old New 

A*(l) unamed A*(I) persistent primes 
E(1) essential primes Q(I) quintessential primes 
U(I) u-essential primes E(I) essential primes 

not previously discussed Q*(I) quintasymptotic primes 
A*(I) asymptotic primes A*(I) asymptotic primes 

iVo2e. Since each of these sets is a subset of A*(I), a prime in any one of 
these sets is a prime divisor of F for all large n. herefore, the word 
“divisor” can be added to any of these names. Thus “the essential primes of 
I” will be used interchangeably with “the essential prime divisors of I.99 

FPNITIONS. These definitions refer to the PEW terminology. A 
e and E(I) are as defined at the start sf this p 
Q*(I) = (P E Spec R j 1~ P and there is a minimal prime z in 
P; is minimal over IRF + z>, 

A*(I) = (Pn R 1 PE o*(u 

Remarks. (a) The similarity between the definitions of Q(I) and e*(S) 
is obvious, and we hope the new terminology reflects it. ( 
similarity induces a similarity between E(d) and A*(B).) 
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(b) It is known that A*(Z) = Ass R/(P), for all large n, [3, Chap. 31. 
The similarity between this characterization, and the definition of A*(Z), 
justify the similarity between these two symbols. 

(c) The overbar in A*(Z) and e*(Z) is to emphasize the connection 
between A*(Z) and the integral closures of F, mentioned in (b), since (I”), 
is often denoted r”. 

REFERENCES 

1. D. KATZ, Prime divisors, asymptotic R-sequences, and unmixed local rings, J. Algebra 95 
(1985), 59-71. 

2. D. KATZ AND L. J. RATLIFF, JR., U-essential prime divisors and sequences over an ideal, 
Nagoya Math. J. 103 (1986), 39-66. 

3. S. MCADAM, “Asymptotic Prime Divisors,” Lecture Notes in Mathematics, No 1023, 
Springer-Verlag, New York, 1983. 

4. S. MCADAM AND L. J. RATLIFF, JR., Finite Transforms of a Noetherian ring, J. Algebra 101 
(1986), 479489. 

5. M. NAGATA, On the chain problem of prime ideals, Nagoya Math. J. 10 (1956), 51-64. 
6. L. J. RATLIFF, JR., Five notes on asymptotic prime divisors, Math. Z. 190 (1985), 567-581. 
7. L. J. RATLIFF AND D. KATZ, Form rings and equivalence, Math. Proc. Cambridge Philos. 

Sot. 99 (1986), 447-456. 


